Solar Tracker

David Oke

Carnegie Mellon Solar Racing

We design, build, and race solar powered boats to practice engineering and to promote clean energy sources.

Purpose of Solar Tracker

- At competition, we charge our batteries in between races with our solar panels
- Status quo:
 - Tedious process
 - Inefficient (15%-30%)
 - Manual

Project Description

- Goal: Design & build a Solar tracker that
 - Maximizes charging efficiency
 - Automated
 - Portable & light
 - Can hold 2-4 large solar panels
 - Inexpensive

Challenges

- Minimal familiarity with circuitry and EE
- First lead role on a project
- Have to guide 8 freshman engineers through the entire process

Brainstorming

- Dual axis or 1 axis?
- Power supply
- Support structure
- How do you track the sun?

Hand Calculations & Assumptions

Deflection of rod ~ 0.2 in

G-2.6

 $v = -\frac{qx}{24EI}(L^3 - 2Lx^2 + x^3)$ $v' = -\frac{q}{24EI}(L^3 - 6Lx^2 - 4x^3)$ $\delta_C = \delta_{\max} = \frac{5qL^4}{384EI} \qquad \theta_A = \theta_B = \frac{qL^3}{24EI}$

Calculations & Assumptions

- Overall Moment of inertia ~ $.0.282 \text{ kg}^{*}\text{m}^{2}$

CAD Modeling

- Initial CAD
 - Motor mounted directly on axle
 - Requires constant torque
 - Solar Panels attached to aluminum t-slots via velcro

CAD Modeling

- Final CAD
 - Replaced motor with linear actuator
 - Can hold a position with no torque
 - Requires no gearing

Fabrication & Manufacturing

- Frame made of Aluminum Tslots
- Linear actuator
- Machined on mill & lathe

Circuitry & Wiring

- NEMA 17 Stepper Motor & driver
 - 0.45 Nm stall torque
- Photoresistors
 - Detect varying amounts of sunlight
 - In series with a resistor to form a voltage divider

Demo

Next Steps

- Improve tolerancing on parts
- More thorough testing before competition